Veri madenciliği teknikleri, veriler arasında gizli kalmış olan örüntüleri ortaya çıkarmayı amaçlamaktadır. Bu kapsamda, tıp gibi birçok alanda yaygın bir biçimde kullanılmaktadır. Teşhis ve tedavisi oldukça zor ve uzun bir süreçten oluşan otizm spektrum bozukluğu doğuştan gelen ya da yaşamın ilk yıllarında ortaya çıkan karmaşık bir nöro-gelişimsel bozukluktur. Bu çalışmada 292 çocuktan toplanan gerçek ve güncel otizm spektrum bozukluğu verileri kullanılmıştır. Veri seti 20 girdi özniteliği ve 1 çıktı özniteliğine sahiptir. Çıktı özniteliği otizmin bulunup bulunmadığını ifade etmektedir. Çalışma da öncelikle veri seti üzerinde eksik verilerin tamamlanması, kategorik verilerin sayısallaştırılması, normalizasyon gibi veri ön işleme aşamaları gerçekleştirilmiştir. Devamında ise öznitelikler yapay sinir ağları ve dilsel kuvvetli sinir-bulanık sınıflayıcı ile sınıflandırılmış, k-means ve x-means ile kümelenmiştir. Her bir yöntemin sonuçları değerlendirilmiş ve performanslar karşılaştırılmıştır.
Data mining techniques aim to reveal hidden patterns in data. They are widely used in many fields, such as medicine. Autism spectrum disorder, whose diagnosis and treatment are difficult and lengthy, is a complex neurodevelopmental disorder that is congenital or occurs in the first years of life. Actual and current autism spectrum disorder data collected from 292 children were used in this study. The data set has 20 input attributes and 1 output attribute. The output attribute expresses whether autism is present or not. In the study, data pre-processing stages, such as completing missing data on the data set, digitizing categorical data, and normalization, were first carried out. Subsequently, the features were classified by artificial neural networks and linguistic strength neuro-fuzzy classifier and clustered with k-means and x-means. The results of each method were evaluated and the performances were compared.